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Hard-Hexagon Model: Anisotropy of 
Correlation Length and Interfaeial Tension 
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The directional dependence of the correlation length of the hard-hexagon model 
is calculated by a new method which introduces the shift operator into the usual 
transfer matrix method. This method is also applied to the calculation of the 
interfacial tension of the hard-hexagon model, which is anisotropic. In addition, 
the equilibrium droplet shape of one phase embedded inside another is obtained 
from the analysis of the interracial tension by the use of Wulff's construction. 
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1. I N T R O D U C T I O N  

The hard-hexagon model is a model of particles placed on the site of a 
triangular lattice in such a way that no two particles occupy the same site 
or adjacent ones. (1) Due to this constraint, one particle excludes other 
particles from the hexagonal region around it (Fig. 1). Hence this model is 
called the hard-hexagon model. Because the hard-hexagon model does not 
have an interaction energy, we can determine its thermal equilibrium state 
for a given value of one-particle activity z. As z increases, this model under- 
goes a phase transition from a homogeneous phase to an inhomogeneous 
one, where densities of three sublattices PA, PB, PC are not equal to each 
other. 

In 1980 Baxter (m) exactly calculated the free energy of this model and 
the order parameter, which is the difference between the sublattice den- 
sities. According to Baxter's exact calculation, the critical activity is 

zc = (11 + 5 x/5)/2 ~ 11.09 (1.l) 
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Fig. 1. 
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A typical configuration of the hard-hexagon model. Occupied sites are denoted by 
solid circles and unoccupied sites are denoted by open circles. 

and the critical exponents are 

c~ = c~' = 1/3 (1.2) 

/~ = 1/9 (1 .3)  

Later, in 1982 Baxter and Pearce (3~ also analyzed the correlation 
length and the interracial tension using the transfer matrix method, where 
they determined other critical exponents, 

v = v ' =  5/6, # = 5/6 (1.4) 

We note here that this analysis assumed a specific orientation of the line 
connecting two particles. We generally expect that the correlation length 
and the interracial tension are anisotropic. It is difficult, however, to find 
the anisotropy using the usual transfer matrix method. 

Recently the interface and crystal shape problem has attracted much 
attention.(4 7) This revival is due to the roughening transition phenomena. 
The analysis of the anisotropic interfacial tension is very important there. 
For example, from its anisotropy we can find the equilibrium droplet shape 
of one phase embedded inside another, using Wulff's construction. 
Moreover, the disappearance of facets in the equilibrium crystal shape is an 
indication of the roughening transition. (8'9~ 

This paper has two purposes. First, using the shift operator, we extend 
the analysis by Baxter and Pearce to find the anisotropy of the correlation 
length and the interracial tension of the hard-hexagon model. Second, the 
equilibrium ,shape of the hard-hexagon crystal is derived from the 
anisotropy of the interracial tension by the use of Wulff's construction. 

The outline of this paper is as follows. In Section 2 we deal with the 
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disordered state of the hard-hexagon model. First, in Section 2.1 a new 
method to calculate the anisotropic correlation length is explained, and in 
Section 2.2 we use this method to extend the analysis of the correlation 
length of the hard-hexagon model by Baxter and Pearce. In Section 3 the 
ordered state of this model is considered. In Sections 3.1 and 3.2 we 
calculate the anisotropic interfacial tension by the use of a similar techni- 
que to that given in Section 2.1. The result of this calculation is used to 
derive the equilibrium shape of the hard-hexagon crystal in Section 3.3. In 
Section 3.4 we analyze the correlation length in the ordered state. Section 4 
is devoted to a summary and discussion. 

2. D ISORDERED STATE 

2.1, Correlat ion Length 1 

We start by reviewing the usual analysis of the correlation length, 
where its anisotropy does not enter. C1'3) We assume the square lattice 
with M columns and N rows which is obtained by deforming the triangular 
lattice (Fig. 2a). We impose on it the cyclic boundary condition in both 
directions (the toroidal boundary condition). At each site labeled (i, j) 
there is an occupation number a•, which takes 1 if the site (i, j) is occupied 
by a particle and 0 otherwise. To each face consisting of four lattice sites 
we assign a Boltzmann weight W(a, b, c, d) if the occupation numbers 
around a face are a, b, c, d counterclockwise starting from the southwest 
corner (Fig. 2b). 

Then two operators are introduced. One is the row-row transfer 
matrix V = { V(a i, aj)}, which is defined as 

M 
V(G,, ~ + ! ) =  I-[ W(o'u+l, o'0, G~+I,j, o.i+ w+l) (2.1) 

j = l  

where the occupation numbers of the ith row {ail ..... aiM} are represented 
by ai. We define also 

M 

Sk(ai' ffi+ l)~'aik ~I ~((7ij, o- i+l , j )  (2.2) 
j = l  

where 6(aij, ai+ ~,j) is the Kronecker delta. These operators can be used to 
represent the correlation between the site (0, 0) and the site (l, m), 

tr[S~ for N > I > 0  (2.3) 
(aooatm) = tr[V N] 
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(b) 

Fig. 2. (a) The deformed triangular lattice. (b) Boltzmann weight around a face. 

(Since (aooO'_l_m)= (aooalm), it is sufficient to consider the case of 
l >  0.) Applying the similarity transformation which diagonalizes V, and 
letting N, M ~ o% we get 

Fv( l]' 
{aOOa,m)=~gO(1, p) Sm(p, 1)LV---~j for l > 0  (2.4) 

p 

where gk is the matrix transformed from Sk by the matrix of eigenvectors 
of V, and V(p) is the pth  eigenvalue of V in decreasing order of absolute 
value. For simplicity we assumed that 

IV(1)l>V(p)l for p r  (2.5) 

Since 

(aoo)(alm) = ~o(1, 1)2 = So(l, 1)Sin(l, 1) (2.6) 
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the correlation function between the site (0, 0) and the site (l, m) is given 
by 

F V(p)V <trooab~)--<aoo)(a,,~)= Z So(I'p) Sm(p' 1 ) | r /TZ-~ ]  for  / > 0  
p # l  k v t l J - I  (2.7) 

When m is fixed and l becomes large, the rhs of (2.7) exponentially decays. 
Analyzing this decay rate, which can be calculated from the ratios between 
the largest and next-largest eigenvalues of V, we can find the correlation 
length r along the vertical axis. In the simplest case, for example, ~ can be 
represented as 

- 1 / 4  = I n [  V(Z)/V(1)] ( 2 . 8 )  

This its the usual method. 
Now we try to find the anisotropy. The behavior of the correlation 

function, when the ratio m to 1 is fixed and l becomes large, comes into 
question. We expect that it also decays exponentially, and the correlation 
length alqong the direction designated by the ratio m to l can be calculated 
from the rate of this decay. In the rhs of (2.7), however, this decay is deter- 
mined by the matrix elements So(1, p) Sm(p, 1), as well as the ratios 
between the eigenvalues. A difficulty arises here: the direct calculation of 
the matrix elements is very complex. Fortunately, it can be done without 
calculating the matrix elements. In the following we explain this. 

Here we introduce the third operator, which is the shift operator T 
defined by 

M 

T(~i, ai+l)= ]-[ 5(ai/, ai+l,j 1) (2.9) 

The shift operator connects Sm with S o by the relation 

S m = TmSo T - m  (2.10) 

The relation (2.10) can be used to rewrite (2.3) as 

tr[SoVIT"SoT-mV N-l] 
(aooa1,, > = tr[VN] for N > / > 0  (2.11) 

Noting that the transfer matrix can be diagonalized simultaneously with 
the shift operator due to the translational invariance of this system, we find 
in the N, M ~ ~ limit 

<~00~,m > -  <~00 > <0"t.,> 

= 2 So(1, p)So(p, 1) [V(p)(T(p))~]+ for l > 0  (2.12) 
4 # ,  Lv(1) \ T ( 1 ) /  ] 

where T(p) is the pth  eigenvalue of T, and v = m/l. 
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Let v be fixed and l large. The rhs of (2.12) shows that the correlation 
function decays exponentially, and that the decay rate is determined by 
[ V(p)/V(1 ) ] [ T(p)/T(1 ) ] v. From the knowledge of the eigenvalues of V 
and the corresponding ones of T, we can find the correlation length along 
the direction designated by v. 

A new problem arises: is the calculation of the eigenvalues of T 
practicable? We finish this section by mentioning that in the case of 
the hard-hexagon model it is a simple problem. In Baxter's method of 
calculating the eigenvalues of the transfer matrix, finding a series of models 
whose transfer matrices commute with each other, the commuting family, 
has an important meaning/1'2/Then a functional equation holding among 
the eigenvalues of the commuting family is derived. Using this, we obtain 
the eigenvalues of all the commuting family. The shift operator is always a 
member of the commuting family, being simultaneously diagonalized with 
the others. In the case of the hard-hexagon model we can get the necessary 
information from the analysis by Baxter and Pearce. (3) 

2.2. Correlat ion Length 2 

Baxter and Pearce assumed the continuous distribution of the eigen- 
values in (2.7), and calculated ~ along the vertical axis by the method of 
steepest descent. We introduce the shift operator into their analysis to find 
the anisotropy of ~. When v is fixed and 1 is large, the correlation function 
is represented as 

~ 1 ~1 d~-ap(a)[O(ax 2)~b(a)V]t for - o o < v < o o  (2.13a) 
a l = l  a 

where 

1 f(ax, x6)f(ax2, x 6) 
~(a)= a f (a_ lx  ' x6)f(a_ax2, X6 ) (2.13b) 

and 

f(p, q)= (l-p) fi (1--pqn)(1--p-'qn)(1--qn) 
n = l  

(2.13c) 

The functions ~(ax -2) and ~b(a) correspond to V(p)/V(1) and T(p)/T(1)in 
(2.12), respectively, and the summation in (2.12) becomes an integral along 
a unit circle due to the continuous distribution of the eigenvalues. The 
function p(a) is to be determined from the distribution of the eigenvalues 
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and the matrix elements So(l, P) So(P, 1). Its explicit form is unknown. In 
this analysis it is sufficient to assume its analyticity. The parameter x is 
related to the one-particle activity z by 

I-I I(~l -xSn-4)(l-xSn-1)~5 
z = - x  _x5,_3 _----~5i  j for - l < x < O  (2.14) 

. ~ ,  )(1 

In the present analysis the triangular lattice is deformed into the square 
lattice. The parameter v is related to 011, which is the argument of the site 
(/, m) on the triangular lattice, by the relation 

1 ~ (2.15) v= for 0<011<• 
2 2 tan 0it 

We estimate the integral in the rhs of (2.13a) by the method of steepest 
descent. For example, when 01p =7r/3 (this is the case of Baxter and 
Pearce), from the derivative of In ~b(a), 

d 
daa in ~b(a) 

= - f ( x  2, x 6) f ( x  3, x 6 ) 

1 f ( a  - lx3/2, x 6 ) f (  - a - 1x3/2, x 6 ) f ( a x  3/2 , x 6 ) f (  - a x  3/2, x 6 ) 
x - (2.16) 

a f ( a - l x ,  x 6 ) f ( a  ix2, x 6 ) f ( a x  2, x 6 ) f ( a x ,  x 6) 

two saddle points of I~b(ax-2)l are found at a = +_x ~/2. After the contour is 
deformed without crossing the singular points of the integrand, the integral 
can be estimated around these two saddle points. Since the contributions 
from these two saddle points are complex conjugate to each other, we get 

(O'O0~lrn) - -  (0"00) (O'lm) ~ ~ exp(--l/4) Cos(lr/+ 6) (2.17a) 

-- 1/4 = In f~b(xl/2)] (2.17b) 

r/= Arg[~b(xl/2)] (2.17c) 

where ~ and 6 are to be determined from p and the second derivative of 
In ~b(a) at a = x m .  

For 01rr the situation remains unchanged: two saddle points 
which are complex conjugate are found, and the rhs of (2.13a) can be 
estimated around them. The equation which determines the saddle points 
as is 

d 
~aa [In (~(ax 2) + v In ~b(a)] . . . .  = 0 (2.18) 
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or from (2.15) and (2.16), after some calculations, 

x / 3 - t a n  0it f(ax, x3)f(a-lx~/2, x 3 ) f ( - a - l x  1/2, x 3) - a  a = G  
x/-3 + tan Otl f (a - lx ,  x3)f(ax 1/2, x 3 ) f ( - a x  I/2, x 3) , 

(2.19) 

Using (2.19) with the condition 

a s = X  1/2 for 011 = re/3 (2.20) 

we can uniquely determine the saddle point in the upper half-plane as a 
continuous function of 01L. (Hereafter we denote it by as.) For large l the 
correlation function can be represented as 

<aooat,~ ) - <aoo > <aZm > ~ 7 exp( - r/r cos[ ( /+  re)t /+ 6] (2.21a) 

IsinO in +sin(0-;)l. ,221b, 
-r/= {arg[~b(asx 2)] + v arg[~b(as)] }/(1 + v) (2.21c) 

where 

r = (l 2 + m 2 - Ira) 1/2 (2.21d) 

Now we investigate the case x - ,  - 1 to find the behavior of r near the 
critical point. We derive also some simple relations satisfied by as. To do 
this, it is convenient to introduce the conjugate modulus transformation (~'3) 

01(u, exp - - e ) = ~  exp - - ~ +  

47zu exp 4~ 2.) x f exp e ' 

1/~,~,/2 g2 u(2u+ re!) 
Ol(b/, --exp --e)---- - - ~ )  exp (~ 8e 

( - - ,  2~tu e - e x p  - ~ )  x f exp 

(2.22) 

(2.23) 

where 

01(u  ' q2) = s in u f i  (1 - 2q 2~ cos 2u + q4n)(1 - q2n) (2.24) 
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The transformation (2.23) can be used in (2.19) to expand it into a power 
series of exp( - 5e/6) for large ~ (or near the critical point), where the new 
variable e is related to x by 

x = -exp(  - ~ 2 / 5 ~ ; )  (2.25) 

Keeping the dominant term in the e --, oo limit, and assuming the region of 
0 < Arg[a]  < ~, we obtain 

,/5 [_~ .'~ Ao2-exp( - 5e/3)exp(-~i/3) 
- - - t a n  01' =exp  [3  l) - A ~ [ - - ~ e / 3 ) ~ x x p ~  (2.26) 
~,f13+ tan 0 H 

where A0 is the asymptotic form of A near the limit e -~ oo defined by 

[I/5c In a , ) i ]  (2.27) A = exp [ \ 3 ~  

Solving (2.25) with the condition of (2.20), we obtain 

Ao=exp [ (Ou-;) iJ exp (- : e ) (2.28) 

Higher order terms of A can be determined first by expressing it as 

A=Ao{l+zl(')exp(-~e)+A(2)exp(-6~)+O[exp(-l@e)]} 
(2.29) 

and then by equating the coefficients of powers of exp(-5e /6)  in the 
expanded form of (2.19), which is obtained by use of (2.23) and (2.29). The 
coefficients A (1), A ~2) .... are determined as 

A(1)= - 4  sin 0u sin 0u+  ~ sin u - ~  (2.30a) 

1 (0u +;) (0  H ; )  (2.30b) A (2) = ~  (A(I)) 2 -  8iA (1) cos 0rl cos cos - 

In terms of these coefficients, a~ can be represented as 

3~ ~ 1 3~ 1 ~/ ln ias'=~-(Ou-~)~+-~Im [A(2)];exp(- 1-~ 
/ 

+ O [~exp  ( - -  ~ e ) ]  (2.31a) 

822/'59/5-6-18 
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~z 3z A~  1 exp ( _  ~ e) + O I~ exp ( _  16_5 e ) l  (2.31b) Arg[a+] - 2 5 

The results (2.30a) and (2.30b) can be used in (2.31a) and (2.31b) to find 
the relations, within the validity of this expansion, 

a}Tz-011)=[a 1(011)] *, a+(OLl+Tz/3)=[a,(011 ) x - l ]  * (2.32) 

Here we return to (2.19) to find some properties of (2.19) which sup- 
port (2.32). It is trivial that if a pair (a0,011) satisfies (2.19), then the pairs 
(ad', 01b) and (ao 1, ~ -  011 ) satisfy (2.19). After some calculations, it can be 
found that the pair (aox-l, 01L+rc/3) also satisfies (2.19). From these 
results, though we cannot prove it rigorously, we expect that (2.32) hold 
exactly. The relations (2.32) can be used in (2.21b) to obtain the relations 

(2.33) 

Expanding (2.21b) and (2.21c) in the same way, we use (2.30a) and 
(2.30b) to ge t 

+r[ 4 cos0 co+(0 + )cos(0 ;)ex.( 
+O[exp( 

1 
~ = ~- -~  exp (~ ~){1 - I1 - 8 sin2 0,, sin2 (0,~ + 3)  sin2 (0,, - ; )  1 

x exp ( -  ~ e )  + 0 [exp ( -  ~ e ) l  } (2.34b) 

Equation (2.34a) indicates that the angular dependence of the correlation 
function is cos[(2r~/3)(l+m)] near the critical point. This reflect the 
ground-state configuration of this system. Equation (2.32b) shows that the 
anisotropy of ~ disappears as the system approaches the critical point. 
Further, we find that the critical exponent v does not depend on the direc- 
tion 0tl: 

v= 5/6 for all 011 (2.35) 
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3. ORDERED STATE 

3.1. Interfacial  Tension 1 

For z > z  c we calculate the free energy of the system with a mis- 
matched vertical seam to analyze the interracial tension. The method by 
Baxter and Pearce (3) is summarized. Under the constraints M =  1 or 2 
(mod 3), N- -  0 (mod 3), the M x N lattice with the toroidal boundary con- 
dition is considered. In the M, N ~ oo limit, reflecting the existence of a 
mismatched vertical seam, there is an excess free energy above the bulk free 
energy. From this excess free energy the interracial tension a along the 
vertical axis can be calculated. Using the notations in Section 2.1, we can 
represent the interfacial tension as 

- - t i f f :  N,M--*oolim l l n  [ ~ l M t r V  N] 

=Ny~lim F i n  - ~ 2 V ( p )  N p  (3.1) 

where tr is the partition function per site, 

~c = lira [tr V N-] 1/NM 
N,M ~ 

= lim V(p) N 
N,M ~ 

(3.2) 

where 

r = N(1 + v 2 - v) m (3.4) 

and v is the parameter designating the direction of the interface. Instead of 
the above constraints, new constraints M =  1 or 2 (mod 3), N(1 + v ) = 0  
(rood 3), are imposed. 

We introduce the shift operator to calculate the anisotropy of the 
interracial tension. Inserting the shift operator can be regarded as tilting the 
interface by moving its endpoint and starting point along the horizontal 
direction (Fig. 3). The anisotropic interfacial tension is given by 

- f la= U,M-,~lim -rllnIK ~1~  tr(VT~)N] 

} = lim l l n  _.---_~ [V(p) T(p)~] u (3.3) 
N , M ~  ~ r ( K  p 
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In contrast to the analysis by Baxter and Pearce, where the interfacial 
tension of M =  1 (mod 3) and that of M = 2  (mod 3) take the same value, 
it will be found that they are different in a general direction. To understand 
the physical meaning of this difference, we investigate what kinds of inter- 
face are considered in the case of M = 1 (mod 3) and M = 2 (rood 3). 

For z > z c  three phases in which every third site is preferentially 
occupied are degenerate. If PA > PB " ~  P c ,  this phase is called the A phase. 
The B phase and the C phase are defined in the same way. For a given 
direction six kinds of interface exist, corresponding to choosing any two 
phases for both sides of the interface from these three phases. The situation 

E 

! 
(a) 

Fig. 3. Typical configurations in the z--* oe limit when three shift operators are inserted 
between the fourth row and the fifth row of the lattice. (a) M =  1 (mod 3), and (b) M = 2  
(rood 3). The starting point of the interface is denoted by S and the end point is denoted by E. 
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"<"4" 
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$ 
E 
\ 

(b) 

Fig. 3. (Continued) 

where the lhs of the interface is A phase and the rhs is B phase is denoted 
by A/B. From the translational invariance of this system, it is found that 
three kinds of interface A/B, B/C, and C/A have the same interfacial ten- 
sion, and that the interfacial tension of A/C, B/A, and C/B are also the 
same. With regard to the interracial tension, we classify six kinds of inter- 
face into two types: the interfaces A/B, B/C, and C/A are of type 1, and the 
others are of type 2. 

Pick a typical configuration of M = 1 (mod 3). Restricting ourselves to 
the region near the interface, we divide the lattice into three subtattices. 
(Due to the toroidal boundary condition and the constraints for M and N, 
we cannot do this all over the lattice.) If the lhs of the interface is regarded 
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as A phase, the rhs is B phase. This fact shows that the interface of M = 1 
(mod 3) is type 1. In the case M = 2 (mod 3), fixing the lhs of the interface 
to be A phase, we find that the rhs is C phase, and that the interface of 
M =  2 (mod 3) is type 2 (Fig. 3). The difference between the interracial ten- 
sion of M =  1 (rnod 3) and M =  2 (rood 3) reflects the difference between 
the two types of interface. 

In the following the problem is defined more precisely. The interfacial 
tension between the A phase and the B phase, denoted by a(A ~ B), is con- 
sidered. We regard a(A ~ B) as a function of 0• which is the angle 
between the normal vector of the interface drawn from the A phase toward 
the B phase and the horizontal axis in the triangular lattice; the horizontal 
axis corresponds to the direction connecting the nearest neighbor lattice 
site. The method is as follows. For - n / 2  < 0• < 7z/2, where the lhs of the 
interface is the A phase and the rhs is the B phase, with the type 1 interface, 
a(A ~ B )  can be calculated by using (3.3) with the constraints M =  1 
(mod3), N ( l + v ) = 0  (mod3). For - T z < 0 j < - 7 ~ / 2  or ~ / 2 < 0 1 < n ,  
where the lhs is the B phase and the rhs is the A phase, with the type 2 
interface, a(A ~ B )  can be calculated by using (3.3) with the constraints 
M = 2  (mod 3), N(1 + v ) = 0  (mod 3). 

The equilibrium crystal shape derived from a(A ~ B) is the shape of 
the droplet of the A phase inside the sea of the B phase. Other kinds of 
interfacial tension can be simply related to a(A-~ B). For example, the 
interfacial tension between the A phase and the C phase, a(A ~ C), can be 
related to a(A ~ B) by 

~r(A ~ CI 0• = r --* BIn + 0• (3.5) 

3.2. Interfacial Tension 2 

First the case of - r t / 2 < 0 •  is considered. Substituting the 
explicit forms of the eigenvalues of V and T into (3.3), (3) we get 

-/~a= lim 1 {1 ~ dap(a)[t~(ax)O(a)~]N } 
N--,~N(I +v2--V) mln  ~ i  i.l=l-a- 

f o r  - - o o  < v <  oo 

where a(A ~ B) is abbreviated to cr, and 

O(a) = - a  1/3f(a-lx' x 3 ) 

f(ax, x 3) 

1 rc 7r 
v = - ~ - t a n  0• +~  for - ~ < 0 •  

(3.6a) 

(3.6b) 

(3.6c) 
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The functions ~p(ax) and tp(a) in (3.6a) correspond to  V(p)/K M and T(p) 
in (3.3), respectively. The summation in (3.3) becomes an integral along 
unit circles on three sheets of the Riemann surface due to the continuous 
distribution of the eigenvalues denoted by p(a). The parameter x is related 
to the one-particle activity z by 

1 f i  ~(l--X5n-3)(1--x5n-2)q 5 
z = -  k~ ~ ~ i ]  j for 0 < x < l  (3.7) 

Xn=l 

The integral in (3.6a) can be estimated by the method of steepest 
descent. It is convenient to rewrite (3.6a) as 

1 
-/?~r -= lim 

N ~ o o  N(1 ..~_ /)2 __ / ) )1/2 

(3.8a) 

where the new parameters v' and N' are related to the old ones by 

1/2 - v tan 0• 
v' = - , N =  (1 + v') N' (3.8b) 

v - 2 x / ]  - tan 0 • 

and to use the derivative of ln[~,(ax)O(a)~/2], 

d 
~aa In [0(ax) 0(a) 1/2] 

1 2 l f ( - -a ' x3 ) f (a - l x3 /2 ' x3 ) f ( - -a - l x3 /2 ' x3 )  (3.9) 
= ---~f  (x, x3) a f(a, x3)f(ax,  x3 ) f (a - l x ,  x3) - 

For a given direction v three saddle points are found on the negative 
parts of the real axes, and the integral in (3.8a) can be estimated around 
them. The saddle point whose argument is rr, denoted by a~, is determined 
by 

x / 3 -  tan 0c f ( - a x ,  x 3 ) f ( a - l x  1/2, x 3 ) f ( - a - l x  1/z, X 3 ) 
- - a  

, , f~+  tan 01 f (  - a - i x ,  x3 ) f (ax  1/2, x 3 ) f ( - a x  1/2, x 3) ' 

and the condition 

a = a  s 

(3.10) 

a s = - i  for 0 •  (3.11) 



1370 Fujirnoto 

The interracial tension is represented as 

~ ~[cos0~ln ~as~, +~o~(0~ 3)1~ ~a~,] 
for - r t /2  < 0• < re/2 (3.12) 

Near the critical point, which is the x ~ 1 limit, (3.12) can be solved 
in the form of the power series. Using the conjugate modulus transforma- 
tion (2.22), we find 

67z0 A(')6~ ( 5 ) [ ~ 1 ilnla~[=__i~_s e • ~e exp g~ + A~2) (A(1)) 2 6re 

exp(-~)+O[!e,p( 6~)] ,3~3a, 
Arg[as] =rt  (3.13b) 

where the new variable e is related to x by 

x = exp( - 4rc2/5e) (3.14) 

and 

~,1,= 4/sinO~ sio(o~+~) sin(O~ 3) ~3l~a, 

=-g[A(1)]2-SA(l)cosO• 0• cos 0k--  (3.15b) 

These results show the relations within the validity of this expansion, 

a,(-O•177 as 0• +~- =as(O• (3.16) 

It is trivial to show that if a pair (ao, 0• satisfies (3.10), then the pair 
(a ~ 1, _ 0• satisfies (3.10). Further, after some calculations, it is found that 
the pair (ao x, O• + 2n/3) also satisfies (3.10). From these we expect that the 
relations (3.16) hold exactly. After the rhs of (3.12) is expanded into power 
series of exp(--5e/6), (3.15a) and (3.15b) can be used to get 
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( )  / ~ a = 2 ~ e x p  - ~ e  +4,~cos0a_cos  0 �9  

lOe) 

+ 2 ~ [1 + 8 sina O• sin (0• +~)  sin 2 - 

+ O  exp - -6 -e  for - ~ < 0 •  (3.17) 

Replacing the function 0(a) in (3.6a) by ~(a), we get the representa- 
tion of the interracial tension for - n  < 0k < --n/2, n/2 < 0• < n, 

where 

--fla=2i~rno~ N(1 + v 2 - v )  1/21n ~ ibl=l-b-- [~(bx)~(b)] N 

for - ~  < v <  oc (3.18a) 

f ( b  lx~/2 x3~ 
~(b) - b 2/3J , , v  ~ .  ' ~" ' -- ~l~(b-1x3/2] 

-- f(bxl/2, x 3) - ,r, , (3.18b) 

and 

v= t a n0 �9  for - n < O •  < 2 '  2 <O• < n  (3.18c) 

The integral in (3.18a) can be estimated by the method of steepest descent. 
The saddle point whose argument is n, denoted by b,, is determined by the 
equation 

x / 3 -  tan Ok f ( - b - i x  1/2, x3) f (bx ,  x 3 ) f ( - b y ,  x 3) 
x/3+ tan O• f ( - b x l / 2 ,  x3) f( b-ix, x3) f ( - b  - i x ,  X3) ' 

and the condition 

b=bs  (3.19) 

b , = - I  for 0k=___n 

The interfacial tension is given by 

(3.20) 

,5 
for - n < O l < - n / 2 ,  n /2<O• (3.21t 
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Here we do not have to solve (3.19) and (3.20) actually. It is sufficient 
to find the relations between bs and at, determined by (3.10) and (3.11). 
When b is transformed into a by 

a = b x  3/2 for z/2 < Ok < It (3.22a) 

and 

a = b x  3/2 for -~z < O• < -~ /2  (3.22b) 

(3.19) coincides with (3.10). If (3.11) is solved with the condition (3.10) 
in the extended region - ~ <  0z <~,  because of the relations (3.16), the 
condition (3.20) is satisfied through (3.22a) and (3.22b). Thus, we find 

as = bs x3/2 for ~/2 < Ok < 7z (3.23a) 

and 

a ,  = bs x -3 /2  for -re < Ok < --re/2 (3.23b) 

These relations can be used in (3.21) to get 

in I~P(a~)l I 

for - r c < O s < - r c / 2 ,  ~z /2<01<~  (3.24) 

The use of (3.16) in (3.12) and (3.24) shows the symmetry relations 

a( - 0k) = a(0• o-(0• + 2~/3) = a(0• (3.25) 

From the expansion (3.17) we can see that the anisotropy of the interfacial 
tension disappears as the system approaches the critical point. The expan- 
sion (3.17) can be extended into the region -re < 0k < re. Thus, we find that 
the critical exponent # does not depend on 0k: 

# =  5/6 for all 0• (3.26) 

The rotation of the interface between the A phase and the B phase 
around a site through re/3 is considered. Although, from the invariance of 
this system for this rotation, the rotated interface must have the same inter- 
facial tension as the former one, it is not evident whether cr satisfies these 
conditions. If the center is on the C lattice, this rotation only causes the 
change of 0k through -2rc/3. The above condition is assured by the second 
relation of (3.25). If the center is on the A lattice, the relation 

cr(A ~ B ] 0• = a(A --* C t 0k + ~/3) (3.27) 
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must be satisfied. The second relation (3.25) assures it through (3.5). 
Similarly, in the case that the center is on the B lattice, the above condition 
is satisfied. 

3.3. Equilibrium Crystal Shape 

Suppose an A phase whose volume (or area) is fixed to be V is embed- 
ded inside a sea of B phase. We consider the problem of finding the shape 
S of the minimum energy from the anisotropic interracial tension. The 
answer to this problem is obtained by use of Wulff's theorem or Wulff's 
construction. (8<~ Wulff's theorem says that there is a special point O 
called the Wulff point inside S, and that if the position vector R(r) is drawn 
from O to each point on S in the direction designated by the unit vector 
r, then R(r) satisfies the relation 

crl-n(r)] 2 for all r (3.28) 
R(r). n(r) 

where n(r) is the normal vector of the interface at the point R(r), and the 
interfacial tension is represented as a function of the normal vector of the 
interface. The constant 2 has a meaning of a scale factor adjusted to yield 
the volume V. The origin of this theorem goes back to Wulff's paper of 
1901, (1~ and later this theorem was proved for some special cases by the 
variational method. (n'12~ 

Using (3.28), we try to construct S. We start with the polar plot of a 
around a fixed point O, which is denoted by Z'. Through each point on L" 
designated by cr(n)n the line which is perpendicular to n is drawn. Proper 
sets of these lines construct infinite closed figures $1, $2,. . .  , S~ .... (Fig. 4). If 
the volume of S~ is V~, enlarging S~ by (V/~'~) ~/2 times, we get the figure 
S~ whose volume is V and which satisfies (3.28), where the value of 2 for 
S~ is 

2~ = (3.29) 

The remaining work is selecting S among the figures S1,  S 2,..., S . . . . . .  

To do this, a helpful relation (8'9) is derived by the use of (3.28). Denoting 
by E,  the total surface energy of S~, we get 

E~ = 22~ V (3.30) 

With the relation (3.29), Eq. (3.30) shows that the minimum energy 
corresponds to the minimum value of V~. From these results we can find 
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0 

p /  

Fig. 4. The polar plot of cr/~ denoted by X in the z ~ so limit. All the figures ~'~1, S2, ~'~3,'" 
satisfy Wulff's theorem. The equilibrium shape is determined as the similar figure of the inner- 
most figure $1. 

that S' corresponding to the minimum-energy S is determined as the inner 
envelope of the lines drawn on Z'. This method has long been known as 
Wulff's geometric construction. 

Recently, some authors have succeeded in representing Wulff's con- 
struction analytically. ~8'9'13) Zia represented it as 

G(n) 
2R(r)  = rain - -  (3.3 la)  

R ( r . n )  

where 

R(r) = [R(r)[ (3.31h) 
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Assuming the different• of ~r(n), he also showed that if the global 
minimum in the rhs of (3.31a) can be replaced by local minimum, we get 

2R(n) = n~r(n) + V'~r(n) (3.32a) 

where V' is the surface gradient defined by 

6a(n) = 6n.  V'a(n) [V'~(n) �9 n = 0] (3.32b) 

and R(n) is a position vector of the interface whose normal vector is n. 
We derive the equilibrium shape of the hard-hexagon crystal from the 

anisotropic interfacial tension a(A-~ B I 0• calculated in Section 3.2. The 
change in the equilibrium crystal shape upon varying one-particle activity 
z is interesting, and its volume is not important. Hereafter, we choose the 
chemical potential ~ related to z by 

/?~ = in z (3.33) 

as 2 and deal with the interfacial tension normalized by ~. 
In the z ~ oo limit, which is the x ~ 0 limit, the behavior of a deter- 

mined by (3.10) and (3.1l) is 

sin(O• - ~z/3) ~ 7z 
a,(O• sin(O~+~z/3) for 0 _ - ~ < 0 •  (3.34a) 

(3) - x~/2 (3.34b~ a s  ~ i 

and we find 

a(O• 3 ~ 2  cosO• for - ; ~ < 0 1 ~ < ;  (3.35) 

(In this limit a/~ gives the number of particles per unit length which is 
removed from the ground state to construct a mismatched vertical seam.) 
Equation (3.35) shows that _r has three cusps at 0• = +~/3, z~ (Fig. 4). 
Using Wulff's geometric construction, we draw the equilibrium crystal 
shape to find that it is a regular triangle consisting of three facets. 

For z <  oo we expect that there are no cusps on S, and use the 
analytic form of Wulff's construction (3.32a). The results of numerical 
calculation are shown in Fig. 5. We see how the equilibrium shape deforms 
into a regular triangle from a sphere near the critical point as z increases. 

We can calculate the radius of curvature at 0• = 0, ~r/3, where a corner 
or a facet appears in z--, oo limit, respectively. Noting that S and the 
equilibrium shape coincide at 0• = 0, re/3, we get 

p/R=l+~-td2~/dO~, 0•  7z/3 (3.36) 
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where p is the radius of curvature. (8'9'14~ This calculation enables us to 
estimate the change in the equilibrium shape quantitatively, and will ensure 
the existence of the roughening transit ion in the z -~ oe limit. 

First, the radius of curvature  at 0a = 0  is calculated. Fixing the 

parameter  x, we expand as as 

a s = ao(1 + A(1)30. + A~2~30~ + ...) (3.37a) 

where 
ao = - 1 ,  6 0 • 1 7 7  (3.37b) 

Expanding (3.10) into a power series of 30• we can determine the coef- 

ficients in (3.37a) as 

A(1) - _ 2 Q2(x6)f(x,x 3) A(2) = 1 
Q4(x3) f (_x  ' x3),  ~ (A(1~)2,... (3.38) 

(a) 

Fig. 5. (a) The polar plot of a/~, and (b) the equilibrium shape. From the outermost figure, 
z = 1.0 x 106, 1.0 x 104, 1.0 x 103, 2.5 x 102, 1.0 x 102, 50, 30, 20, and 15, successively. 
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where 

(b) 
FIGURE 5 (continued) 

Q ( q ) =  1~ (1 _ q n )  (3.39) 
n = l  

In this calculation the second derivative, 

d 2 
da--- 7 lnl-~k(ax) r 

1 2 x x3) f ( - a '  x3)f(a-lx3/Z' x3)f(-a-lx3/2 '  x3) 
= 2 ~  f ( ' f(a, x3) f(ax, x3) f ( a -  lx, x 3) 

x3~f2(a-lx 3/2, x3) f 2 ( - a  1x3/2, x 3) 
+2-~fZ(x, x3)f2(--x, , f - ~ , x 3 ) f 2 ( a - a x ,  x 3) 

Q4(x3) f(ia, x 3 ) f ( -  ia, x 3 ) f(iax 3/2, x 3 ) f ( -  iax 3/2, x 3 ) 
2 f2( x, x3) O2(x6 ) f2(a, x 3) f(ax, x 3 ) f (a -  ix, x 3) 

(3.40) 
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is useful. The above results can be used in (3.12) to find 

---=2 [Xi/3f(--~s ] 
- x / 3  In L f ( - x ,  x3)J 

1 In [xl/3f~ - 1, x 3 ) ]  1 f 4 ( x ,  x 3) 
+ { ~  7;, ~ j  + 3 ~y~77Z_x,>)j < +o(<) 

(3.41) 
Using (3.41) in (3.36), we get 

p V1/(3 N ~ ) ]  E f4 (x ,  x 3 ) / f 4 ( - x ,  x 3 ) ]  (3.42) 
R - (2/x/-3) lnExl/y( - 1, x3)/f( - x ,  x3)3 

In the z -+ oo limit, p/R behaves as 

p (  1 )  1 1 (3.43) 
R l n x  ~ l n z - / ? ~  

and near the critical point, by the use of the conjugate modulus transfor- 
mation (2.22), we find that 

9 5 ) + O I e x p ( _ ~ e ) ]  P = l - ~ e x p ( - R  (3.44) 

where 

For 0a = z(3, similarly, as can be expanded as 

as = ao(1 + 3(1)602. + 3(2)602 + " ") 

ao = - x l / 2 ,  002. = 02. -- re~3 

and 

A(1) _ 
1 x_ l /2 f (x ,  x3)f(--X 3/2, X 3) 

x/~  Q3(x3) f ( -  xl/2, x3) ' 
1 A (2) = ~  (A(1)) 2 .... 

From these results we obtain 

(3.45a) 

(3.45b) 

(3.46) 

r ~2,_xlJ2 x3t] 1 / 1/'3,I ", "~ ' 
x/~ in [_x ' f2(_x3/2,  x3)j  

+ ~ In r j 2 ( _  x1~2 ~3) ] 
12 ,~  P ~_~,~2,x3)j 

~ x~(~,~ 3) 
+ -/~ x>~ r47--~x~/2 x ,~  60~ + 0(60~) 3W_, .,1 , , ,~ 

(3.47) 
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and 

P 
R 

(2/3 ~)( l/xl/2)[f4(x, X3)/U4(--  X 1/2, X3)] 
(1/x/~)ln xl/3 2 xl/2 X 3 2 X3) '] -- ~ ~f ( - -  , ) I f  (--X 3/2, 

The behavior of p/R in z ~ oe is given by 

~ --]-nn x ]  ~ ln z fl~ exp 

and near the critical point 

(3.48) 

(3.49) 

9 t ,0t P"~R l + ~ e x p ( - g  

3.4. Correlation Length 

The argument in Sections 2.1 and 2.2 is repeated. When v is fixed and 
I large, the correlation function is represented as 

( 1 )  2 q~ da~, db 
p(a, b)[O(ax) 

• [ ~ ( b x )  4;v(b)] r for oo < v < (3.51a) 

where the parameter v is related to 0 H by 

v = 1 x/3 (3.51b) 
2 2 tan 0rl 

The integral in (3.51a) is estimated by the method of steepest descent. 
Noting that this calculation is the same as Section 3.2 except (3.51b), we 
find 

(3.52a) 

o 

+ sinOiFlnf(t(b,x)l+sin 011-- ~ lnI~(b,)l  (3.52b) 

822/59/5-6-19 
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where as is the saddle point of I~(ax)~V(a)l whose argument is rE, and b~ 
is that of [q~(bx) ~(b)l whose argument is 7:. Baxter and Pearce showed that 
a simple relation holds between the correlation length and the interracial 
tension along the vertical axis. (3) This relation is extended here for all 
directions from (3.52b) as 

1/~ = fl[a(A -~ B) + a(A ~ C)] (3.53) 

where a(A-~  B) and a(A ~ C) are the two types of interfacial tension 
defined in Section 3.1 in the direction of 4. 

The behavior of ~ near the critical point is given by 

~ = 1 - ~  exp (5  e ~ i -  I 1 +  8 cos2 0,, cos2 (0 , '~- ; )  cos2 (0il - ; )  1 
4 ,,/3 \t) /~ I 

x exp ( -  ~ e )  + O Iexp ( -  ~ ) ]  } (3.54) 

We find that the critical exponent v' does not depend on the direction: 

v '=  5/6 for all 011 (3.55) 

From (3.25) it is shown that ~ satisfies the relations 

~(011+ re/3) = ~(011), ~(-011) = ~(Otl) , (3.56) 

4. S U M M A R Y  A N D  D I S C U S S I O N  

We have proposed a new method which enables us to calculate the 
anisotropy of the correlation length. In this method the shift operator and 
the transfer matrix are used simultaneously. Using this method, we have 
extended the analysis by Baxter and Pearce where the correlation length of 
the hard-hexagon model along the vertical axis has been calculated, and 
derived some equations which determine the anisotropic correlation length 
of this model. This method is expected to be applicable to other models. , 
We will study this problem in a separate paper. 

Similarly, for z > zc, we have analyzed the anisotropic interracial ten- 
sion of the hard-hexagon model. In contrast to the Ising model, which is 
the only model whose anisotropic interfacial tension has been exactly 
calculated before, the hard-hexagon model has a feature that in the ordered 
state three phases degenerate. Noting this point, we have calculated the 
interfacial tension between the A phase and B phase. From this analysis the 
equilibrium shape of a droplet of A phase embedded inside the B phase has 
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been found by the use of Wulff's construction. Further, considering the 
radius of curvature at some special points on the equilibrium shape, we 
have shown the roughening transition in the z--* ov limit quantitatively. 
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